SUPPLEMENT ## Is There a Critical Period for the Developmental Neurotoxicity of Low-Level ## **Tobacco Smoke Exposure?** Theodore A. Slotkin¹, Ashley Stadler¹, Samantha Skavicus¹, Jennifer Card¹, Jonathan Ruff¹, Edward D. Levin² and Frederic J. Seidler¹ ¹Department of Pharmacology & Cancer Biology ²Department of Psychiatry & Behavioral Sciences Duke University Medical Center Durham, NC 27710 USA ## **Contents:** Table S1. Body and brain region weights Table S2. ChAT activity Table S3. HC3 binding Table S4. HC3/ChAT ratio Table S5. nAChR binding Table S6. 5HT receptor binding TABLE S1: Body and Brain Region Weights (mean \pm SE) | | Age | Male | | | | | Female | | | | | | |-------------------------|-----|--------------|------------------|---------------------------|--------------------------|--------------|------------------|---------------------------|--------------------------|--|--|--| | | | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | | | | | Body Weight (g) | 30 | 116 ± 1 | 115 ± 2 | 110 ± 2 | 112 ± 2 | 102 ± 6 | 103 ± 3 | 96 ± 1 | 106 ± 1 | | | | | | 60 | 390 ± 5 | 384 ± 2 | 392 ± 7 | 382 ± 3 | 235 ± 2 | 229 ± 3 | 228 ± 2 | 239 ± 4 | | | | | | 100 | 557 ± 10 | 550 ± 7 | 559 ± 10 | 540 ± 7 | 295 ± 9 | 293 ± 8 | 279 ± 8 | 297 ± 7 | | | | | | 150 | 667 ± 13 | 639 ± 19 | 645 ± 19 | 660 ± 10 | 334 ± 10 | 299 ± 5 | 313 ± 5 | 321 ± 5 | | | | | | | | | | | | | | | | | | | Region Weight (mg) | | | | | | | | | | | | | | | 30 | 237 ± 6 | 228 ± 4 | 222 ± 10 | 236 ± 12 | 225 ± 3 | 238 ± 4 | 220 ± 9 | 224 ± 12 | | | | | fuantal/namiatal aautay | 60 | 256 ± 9 | 262 ± 5 | 264 ± 5 | 260 ± 14 | 235 ± 6 | 244 ± 8 | 244 ± 7 | 242 ± 9 | | | | | frontal/parietal cortex | 100 | 269 ± 7 | 264 ± 8 | 262 ± 10 | 256 ± 9 | 260 ± 14 | 252 ± 6 | 238 ± 10 | 234 ± 4 | | | | | | 150 | 274 ± 11 | 251 ± 6 | 253 ± 10 | 275 ± 12 | 231 ± 9 | 240 ± 5 | 244 ± 8 | 244 ± 7 | | | | | | 30 | 176 ± 4 | 188 ± 15 | 176 ± 5 | 174 ± 8 | 166 ± 9 | 171 ± 9 | 167 ± 5 | 169 ± 5 | | | | | temporal/occipital | 60 | 202 ± 5 | 201 ± 7 | 196 ± 10 | 191 ± 8 | 186 ± 5 | 187 ± 7 | 182 ± 6 | 183 ± 7 | | | | | cortex | 100 | 222 ± 10 | 230 ± 15 | 211 ± 8 | 213 ± 13 | 219 ± 20 | 201 ± 19 | 197 ± 3 | 220 ± 9 | | | | | | 150 | 208 ± 4 | 203 ± 7 | 212 ± 12 | 204 ± 8 | 205 ± 9 | 189 ± 7 | 189 ± 8 | 197 ± 4 | | | | | | 30 | 129 ± 6 | 133 ± 4 | 125 ± 3 | 126 ± 3 | 124 ± 7 | 125 ± 6 | 121 ± 2 | 130 ± 6 | | | | | 1. | 60 | 153 ± 7 | 147 ± 6 | 156 ± 5 | 148 ± 6 | 142 ± 4 | 146 ± 3 | 149 ± 3 | 140 ± 7 | | | | | hippocampus | 100 | 163 ± 3 | 169 ± 7 | 155 ± 3 | 160 ± 4 | 156 ± 9 | 147 ± 6 | 159 ± 8 | 147 ± 5 | | | | | | 150 | 158 ± 5 | 164 ± 7 | 161 ± 6 | 170 ± 7 | 150 ± 6 | 151 ± 4 | 153 ± 12 | 149 ± 6 | | | | | | 30 | 90 ± 6 | 94 ± 6 | 90 ± 6 | 96 ± 6 | 93 ± 5 | 95 ± 6 | 79 ± 5 | 104 ± 9 | | | | | | 60 | 113 ± 8 | 115 ± 2 | 120 ± 8 | 119 ± 9 | 110 ± 11 | 103 ± 5 | 110 ± 5 | 100 ± 5 | | | | | striatum | 100 | 112 ± 5 | 131 ± 11 | 130 ± 9 | 124 ± 5 | 106 ± 5 | 112 ± 4 | 120 ± 9 | 104 ± 9 | | | | | | 150 | 120 ± 8 | 119 ± 5 | 114 ± 5 | 124 ± 4 | 113 ± 8 | 104 ± 4 | 104 ± 7 | 104 ± 6 | | | | | | 30 | 272 ± 13 | 280 ± 8 | 270 ± 4 | 264 ± 3 | 260 ± 4 | 256 ± 12 | 257 ± 2 | 264 ± 7 | | | | | | 60 | 333 ± 10 | 346 ± 6 | 321 ± 6 | 346 ± 11 | 307 ± 5 | 307 ± 5 | 297 ± 18 | 308 ± 8 | | | | | midbrain | 100 | 355 ± 10 | 367 ± 7 | 351 ± 7 | 348 ± 15 | 332 ± 10 | 330 ± 10 | 334 ± 7 | 331 ± 4 | | | | | | 150 | 376 ± 9 | 380 ± 6 | 374 ± 7 | 362 ± 7 | 341 ± 12 | 346 ± 7 | 338 ± 9 | 335 ± 14 | | | | | | 30 | 156 ± 1 | 152 ± 4 | 148 ± 4 | 153 ± 3 | 152 ± 5 | 152 ± 5 | 150 ± 6 | 147 ± 11 | | | | | | 60 | 223 ± 4 | 216 ± 9 | 219 ± 8 | 218 ± 7 | 213 ± 4 | 204 ± 10 | 215 ± 17 | 210 ± 5 | | | | | brainstem | 100 | 265 ± 11 | 249 ± 10 | 255 ± 10 | 239 ± 7 | 233 ± 3 | 237 ± 5 | 233 ± 6 | 238 ± 5 | | | | | | 150 | 269 ± 4 | 256 ± 8 | 258 ± 9 | 266 ± 7 | 240 ± 10 | 233 ± 5 | 237 ± 6 | 247 ± 5 | | | | Data represent mean \pm SE obtained from six animals in each treatment group for each age and sex. For body weight, three-factor ANOVA (treatment, age, sex) indicates a main effect of treatment (p < 0.0009) as well as interactions of treatment \times sex (p < 0.02) and treatment \times age (p < 0.04). After subdivision by sex, males showed no significant weight differences, whereas females did (main treatment effect, p < 0.0002); for females, the TSE Premating and TSE Early Gestation groups were significantly different from control (p < 0.03 and p < 0.0006, respectively), representing average deficits of 3-5%. After subdivision by age, we found a significant treatment effect restricted to PN30 (p < 0.002), with the TSE Early Gestation group as the only one showing a significant difference from control (5% deficit, p < 0.002). Further subdivisions were not assessed because of the absence of a treatment \times sex \times age interaction; likewise, there were no significant treatment \times sex interactions at any of the individual age points, nor any treatment \times age interaction for either sex. For brain region weight, four-factor ANOVA (treatment, age, sex, region) indicates no significant treatment effects and no interactions of treatment with the other factors. Note that weights for frontal/parietal cortex and temporal/occipital cortex are for the right hemisphere only, the portion used in this study. **TABLE S2:** ChAT Activity (mean \pm SE) | Region | Postnatal
Age | Mal | le (pmol/min | per mg prot | ein) | Female (pmol/min per mg protein) | | | | | |--------------------|------------------|-----------------|------------------|---------------------------|--------------------------|----------------------------------|------------------|---------------------------|--------------------------|--| | | | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | | | | 30 | 0.69 ± 0.04 | 0.74 ± 0.03 | 0.78 ± 0.03 | 0.77 ± 0.03 | 0.76 ± 0.02 | 0.80 ± 0.03 | 0.77 ± 0.05 | 0.72 ± 0.02 | | | frontal/parietal | 60 | 0.77 ± 0.06 | 0.81 ± 0.02 | 0.82 ± 0.03 | 0.73 ± 0.03 | 0.80 ± 0.06 | 0.78 ± 0.02 | 0.76 ± 0.03 | 0.81 ± 0.02 | | | cortex | 100 | 0.73 ± 0.03 | 0.76 ± 0.04 | 0.73 ± 0.02 | 0.72 ± 0.06 | 0.73 ± 0.03 | 0.75 ± 0.03 | 0.74 ± 0.02 | 0.69 ± 0.05 | | | | 150 | 0.78 ± 0.02 | 0.85 ± 0.03 | 0.78 ± 0.01 | 0.79 ± 0.02 | 0.86 ± 0.03 | 0.87 ± 0.03 | 0.82 ± 0.03 | 0.84 ± 0.04 | | | | 30 | 0.78 ± 0.03 | 0.78 ± 0.05 | 0.88 ± 0.05 | 0.89 ± 0.05 | 0.73 ± 0.02 | 0.87 ± 0.03 | 0.85 ± 0.04 | 0.77 ± 0.05 | | | temporal/occipital | 60 | 0.47 ± 0.02 | 0.49 ± 0.02 | 0.47 ± 0.02 | 0.46 ± 0.02 | 0.50 ± 0.01 | 0.47 ± 0.02 | 0.48 ± 0.04 | 0.52 ± 0.02 | | | cortex | 100 | 0.53 ± 0.01 | 0.55 ± 0.03 | 0.57 ± 0.02 | 0.59 ± 0.03 | 0.52 ± 0.03 | 0.57 ± 0.02 | 0.59 ± 0.02 | 0.58 ± 0.02 | | | | 150 | 0.67 ± 0.03 | 0.76 ± 0.05 | 0.76 ± 0.02 | 0.69 ± 0.01 | 0.73 ± 0.02 | 0.77 ± 0.02 | 0.74 ± 0.02 | 0.76 ± 0.04 | | | | 30 | 0.89 ± 0.04 | 0.83 ± 0.04 | 0.94 ± 0.07 | 0.86 ± 0.05 | 0.91 ± 0.02 | 0.94 ± 0.06 | 0.91 ± 0.07 | 0.83 ± 0.03 | | | 1.1 | 60 | 0.91 ± 0.04 | 0.90 ± 0.04 | 0.90 ± 0.05 | 0.88 ± 0.03 | 0.94 ± 0.04 | 1.02 ± 0.05 | 0.87 ± 0.03 | 0.92 ± 0.06 | | | hippocampus | 100 | 1.06 ± 0.06 | 1.16 ± 0.03 | 1.09 ± 0.07 | 1.10 ± 0.04 | 1.08 ± 0.06 | 1.20 ± 0.04 | 1.13 ± 0.04 | 0.99 ± 0.03 | | | | 150 | 1.02 ± 0.02 | 1.07 ± 0.02 | 1.06 ± 0.04 | 1.00 ± 0.03 | 1.11 ± 0.03 | 1.11 ± 0.02 | 1.10 ± 0.03 | 1.06 ± 0.04 | | | | 30 | 2.27 ± 0.12 | 2.27 ± 0.05 | 2.61 ± 0.09 | 2.43 ± 0.11 | 2.34 ± 0.09 | 2.23 ± 0.11 | 2.75 ± 0.19 | 2.32 ± 0.16 | | | atri atrona | 60 | 2.61 ± 0.13 | 2.98 ± 0.07 | 2.70 ± 0.11 | 2.82 ± 0.05 | 3.09 ± 0.16 | 2.79 ± 0.12 | 3.02 ± 0.09 | 2.43 ± 0.11 | | | striatum | 100 | 2.02 ± 0.12 | 2.25 ± 0.08 | 2.57 ± 0.13 | 2.27 ± 0.10 | 2.47 ± 0.07 | 2.43 ± 0.16 | 2.36 ± 0.09 | 2.35 ± 0.05 | | | | 150 | 2.44 ± 0.20 | 2.57 ± 0.15 | 2.67 ± 0.10 | 2.36 ± 0.11 | 2.43 ± 0.09 | 2.63 ± 0.12 | 2.52 ± 0.11 | 2.28 ± 0.16 | | | | 30 | 0.63 ± 0.04 | 0.66 ± 0.02 | 0.74 ± 0.04 | 0.68 ± 0.03 | 0.70 ± 0.03 | 0.68 ± 0.03 | 0.73 ± 0.04 | 0.63 ± 0.02 | | | midhusin | 60 | 0.64 ± 0.03 | 0.65 ± 0.03 | 0.65 ± 0.02 | 0.65 ± 0.01 | 0.65 ± 0.01 | 0.67 ± 0.02 | 0.70 ± 0.02 | 0.65 ± 0.02 | | | midbrain | 100 | 0.61 ± 0.03 | 0.61 ± 0.02 | 0.63 ± 0.03 | 0.64 ± 0.03 | 0.61 ± 0.01 | 0.70 ± 0.02 | 0.67 ± 0.02 | 0.61 ± 0.03 | | | | 150 | 0.62 ± 0.02 | 0.68 ± 0.02 | 0.72 ± 0.03 | 0.70 ± 0.02 | 0.72 ± 0.02 | 0.72 ± 0.02 | 0.71 ± 0.02 | 0.64 ± 0.03 | | | 1 | 30 | 1.14 ± 0.02 | 1.16 ± 0.03 | 1.21 ± 0.03 | 1.15 ± 0.04 | 1.16 ± 0.03 | 1.16 ± 0.03 | 1.16 ± 0.03 | 1.16 ± 0.05 | | | | 60 | 1.06 ± 0.03 | 1.10 ± 0.03 | 1.13 ± 0.04 | 1.07 ± 0.04 | 1.12 ± 0.02 | 1.13 ± 0.03 | 1.15 ± 0.05 | 1.13 ± 0.03 | | | brainstem | 100 | 0.95 ± 0.06 | 0.98 ± 0.02 | 1.02 ± 0.03 | 1.03 ± 0.04 | 0.99 ± 0.03 | 1.06 ± 0.03 | 1.01 ± 0.02 | 1.00 ± 0.02 | | | | 150 | 1.11 ± 0.05 | 1.11 ± 0.03 | 1.12 ± 0.02 | 1.05 ± 0.03 | 1.15 ± 0.04 | 1.20 ± 0.03 | 1.09 ± 0.04 | 1.08 ± 0.03 | | TABLE S3: HC3 Binding (mean \pm SE) | Region | Postnatal
Age | | Male (fmol/1 | ng protein) | | | Female (fmo | l/mg protein) | | |--------------------|------------------|----------------|------------------|---------------------------|--------------------------|----------------|------------------|---------------------------|--------------------------| | | | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | | | 30 | 10.6 ± 0.8 | 8.8 ± 0.5 | 9.3 ± 0.5 | 9.2 ± 0.3 | 10.8 ± 1.1 | 8.7 ± 0.4 | 9.4 ± 0.4 | 8.3 ± 0.5 | | frontal/parietal | 60 | 13.1 ± 0.6 | 12.7 ± 0.7 | 11.7 ± 0.7 | 10.8 ± 0.8 | 13.4 ± 0.4 | 11.5 ± 0.7 | 11.7 ± 0.9 | 12.6 ± 0.9 | | cortex | 100 | 7.7 ± 0.4 | 7.5 ± 0.6 | 7.1 ± 0.7 | 6.4 ± 0.5 | 7.5 ± 0.6 | 8.3 ± 1.1 | 7.3 ± 0.4 | 6.7 ± 0.6 | | | 150 | 10.4 ± 0.8 | 11.3 ± 0.5 | 9.1 ± 0.7 | 9.7 ± 0.5 | 10.6 ± 0.4 | 11.2 ± 0.6 | 9.3 ± 0.4 | 9.6 ± 0.6 | | | 30 | 7.3 ± 0.7 | 7.2 ± 0.3 | 6.5 ± 0.3 | 6.8 ± 0.5 | 6.4 ± 0.7 | 6.6 ± 0.4 | 5.8 ± 0.6 | 6.3 ± 0.6 | | temporal/occipital | 60 | 6.7 ± 0.2 | 6.0 ± 0.5 | 5.5 ± 0.3 | 6.2 ± 0.4 | 7.4 ± 0.4 | 6.8 ± 0.4 | 6.0 ± 0.4 | 5.5 ± 0.7 | | cortex | 100 | 7.1 ± 0.3 | 6.7 ± 0.3 | 6.4 ± 0.4 | 6.8 ± 0.4 | 6.8 ± 0.3 | 6.7 ± 0.4 | 7.7 ± 0.6 | 6.2 ± 0.5 | | | 150 | 7.0 ± 0.4 | 7.6 ± 0.3 | 6.5 ± 0.3 | 6.3 ± 0.8 | 7.2 ± 0.4 | 7.8 ± 0.5 | 6.0 ± 0.3 | 7.0 ± 0.2 | | | 30 | 10.1 ± 0.8 | 9.4 ± 0.6 | 8.3 ± 0.5 | 7.4 ± 1.1 | 10.4 ± 0.9 | 7.9 ± 0.4 | 9.0 ± 0.5 | 6.6 ± 0.6 | | hippocampus | 60 | 8.9 ± 0.5 | 8.7 ± 0.5 | 9.4 ± 0.6 | 8.8 ± 0.4 | 9.4 ± 0.8 | 8.8 ± 1.0 | 8.8 ± 0.5 | 7.4 ± 0.6 | | mppocampus | 100 | 12.7 ± 0.6 | 12.9 ± 0.7 | 11.3 ± 0.7 | 11.4 ± 0.8 | 12.1 ± 0.9 | 11.5 ± 0.9 | 12.4 ± 1.0 | 11.3 ± 0.7 | | | 150 | 12.2 ± 0.4 | 11.8 ± 0.8 | 10.0 ± 0.3 | 9.8 ± 0.4 | 11.9 ± 0.4 | 11.8 ± 1.0 | 11.5 ± 0.9 | 11.9 ± 0.6 | | | 30 | 46 ± 3 | 54 ± 5 | 46 ± 2 | 48 ± 3 | 49 ± 2 | 50 ± 2 | 55 ± 5 | 43 ± 2 | | striatum | 60 | 60 ± 8 | 52 ± 4 | 40 ± 3 | 43 ± 2 | 49 ± 5 | 42 ± 4 | 48 ± 4 | 40 ± 4 | | Striatum | 100 | 48 ± 4 | 56 ± 4 | 47 ± 4 | 41 ± 4 | 49 ± 4 | 50 ± 2 | 49 ± 4 | 43 ± 3 | | | 150 | 37 ± 1 | 41 ± 2 | 36 ± 3 | 36 ± 3 | 44 ± 3 | 38 ± 3 | 38 ± 2 | 36 ± 3 | | | 30 | 6.4 ± 0.4 | 6.7 ± 0.5 | 6.7 ± 0.3 | 6.9 ± 0.5 | 7.4 ± 0.3 | 6.3 ± 0.4 | 6.4 ± 0.3 | 5.9 ± 0.3 | | midbrain | 60 | 9.2 ± 0.4 | 9.3 ± 0.4 | 8.3 ± 0.5 | 7.5 ± 0.4 | 8.8 ± 0.4 | 8.7 ± 0.4 | 7.4 ± 0.6 | 7.6 ± 0.6 | | illidoralli | 100 | 6.9 ± 0.5 | 6.4 ± 0.5 | 6.4 ± 0.3 | 6.5 ± 0.5 | 6.3 ± 0.2 | 6.8 ± 0.4 | 6.7 ± 0.4 | 6.6 ± 0.3 | | | 150 | 6.9 ± 0.3 | 7.5 ± 0.2 | 6.7 ± 0.2 | 7.0 ± 0.3 | 7.5 ± 0.4 | 7.3 ± 0.2 | 7.2 ± 0.5 | 6.6 ± 0.2 | | | 30 | 5.9 ± 0.9 | 5.9 ± 0.8 | 5.7 ± 0.3 | 5.4 ± 0.3 | 7.2 ± 0.8 | 6.0 ± 0.4 | 5.2 ± 0.3 | 5.5 ± 0.9 | | brainstem | 60 | 3.7 ± 0.2 | 3.6 ± 0.2 | 3.3 ± 0.1 | 3.0 ± 0.2 | 3.6 ± 0.1 | 3.8 ± 0.4 | 3.0 ± 0.2 | 3.0 ± 0.4 | | Utanisteni | 100 | 3.7 ± 0.4 | 3.7 ± 0.5 | 4.0 ± 0.4 | 3.9 ± 0.3 | 3.6 ± 0.4 | 3.3 ± 0.4 | 3.0 ± 0.3 | 3.0 ± 0.2 | | | 150 | 3.4 ± 0.2 | 3.5 ± 0.2 | 3.5 ± 0.2 | 3.9 ± 0.1 | 3.9 ± 0.1 | 3.4 ± 0.1 | 3.8 ± 0.2 | 3.6 ± 0.2 | TABLE S4: HC3/ChAT ratio (mean \pm SE) | Region | Postnatal
Age | | Ma | ıle | | Female | | | | |--------------------|------------------|----------------|------------------|---------------------------|--------------------------|----------------|------------------|---------------------------|--------------------------| | | | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | | | 30 | 15.5 ± 1.4 | 12.3 ± 0.6 | 11.8 ± 0.5 | 12.3 ± 0.6 | 14.2 ± 1.5 | 11.0 ± 0.7 | 12.3 ± 0.7 | 11.5 ± 0.6 | | frontal/parietal | 60 | 17.4 ± 1.5 | 15.7 ± 0.8 | 14.3 ± 0.6 | 14.9 ± 0.9 | 17.0 ± 0.8 | 14.8 ± 0.8 | 15.4 ± 1.1 | 15.5 ± 0.8 | | cortex | 100 | 10.5 ± 0.4 | 10.0 ± 0.8 | 9.7 ± 0.9 | 9.0 ± 0.7 | 10.3 ± 0.6 | 10.7 ± 1.1 | 9.8 ± 0.6 | 9.6 ± 0.5 | | | 150 | 13.3 ± 0.9 | 13.4 ± 0.6 | 11.7 ± 0.9 | 12.3 ± 0.5 | 12.5 ± 0.6 | 12.9 ± 0.4 | 11.4 ± 0.8 | 11.4 ± 0.6 | | | 30 | 9.4 ± 0.9 | 9.1 ± 0.3 | 7.5 ± 0.5 | 7.7 ± 0.7 | 8.7 ± 0.8 | 7.5 ± 0.4 | 6.8 ± 0.5 | 8.2 ± 0.5 | | temporal/occipital | 60 | 14.9 ± 0.5 | 11.9 ± 0.7 | 11.7 ± 0.6 | 13.5 ± 1.0 | 15.0 ± 0.8 | 14.6 ± 0.8 | 12.9 ± 1.4 | 10.8 ± 1.2 | | cortex | 100 | 13.5 ± 0.6 | 12.2 ± 0.6 | 11.3 ± 0.6 | 11.7 ± 0.6 | 13.6 ± 1.5 | 11.7 ± 0.9 | 13.2 ± 1.1 | 10.8 ± 0.5 | | | 150 | 10.5 ± 0.6 | 10.3 ± 0.7 | 8.5 ± 0.3 | 8.3 ± 0.9 | 9.8 ± 0.6 | 10.2 ± 0.6 | 8.3 ± 0.6 | 9.5 ± 0.8 | | | 30 | 11.5 ± 1.2 | 11.5 ± 1.1 | 9.0 ± 0.7 | 9.0 ± 1.2 | 11.4 ± 1.3 | 8.4 ± 0.2 | 10.0 ± 0.6 | 7.8 ± 0.8 | | hippocampus | 60 | 9.9 ± 0.7 | 9.8 ± 0.8 | 10.1 ± 1.0 | 10.2 ± 0.9 | 10.0 ± 0.7 | 8.7 ± 1.1 | 10.1 ± 0.6 | 8.3 ± 0.9 | | inppocampus | 100 | 11.5 ± 0.2 | 11.2 ± 0.6 | 10.7 ± 1.0 | 10.3 ± 0.7 | 11.3 ± 0.9 | 9.7 ± 0.8 | 11.0 ± 0.9 | 11.1 ± 0.9 | | | 150 | 12.0 ± 0.4 | 10.7 ± 0.7 | 9.3 ± 0.3 | 10.2 ± 0.6 | 10.6 ± 0.4 | 10.6 ± 1.0 | 10.4 ± 0.6 | 11.4 ± 0.8 | | | 30 | 20 ± 1 | 24 ± 2 | 18 ± 1 | 20 ± 2 | 21 ± 1 | 22 ± 2 | 20 ± 1 | 19 ± 1 | | striatum | 60 | 24 ± 4 | 17 ± 1 | 15 ± 1 | 15 ± 1 | 16 ± 2 | 15 ± 1 | 16 ± 1 | 16 ± 1 | | Striatum | 100 | 23 ± 2 | 25 ± 2 | 19 ± 2 | 20 ± 1 | 20 ± 2 | 21 ± 2 | 21 ± 1 | 19 ± 1 | | | 150 | 16 ± 1 | 16 ± 1 | 13 ± 1 | 15 ± 1 | 18 ± 1 | 15 ± 2 | 15 ± 1 | 16 ± 1 | | | 30 | 10.5 ± 1.3 | 10.0 ± 0.6 | 9.0 ± 0.4 | 10.1 ± 0.7 | 10.3 ± 0.8 | 9.2 ± 0.7 | 8.8 ± 0.5 | 9.2 ± 0.5 | | midbrain | 60 | 14.7 ± 1.0 | 14.3 ± 0.5 | 12.8 ± 0.6 | 11.6 ± 0.6 | 13.4 ± 0.8 | 12.8 ± 0.5 | 10.9 ± 1.0 | 11.8 ± 1.0 | | illidoralli | 100 | 11.5 ± 1.0 | 10.7 ± 0.8 | 10.5 ± 0.5 | 10.2 ± 0.8 | 10.4 ± 0.3 | 9.8 ± 0.8 | 10.0 ± 0.6 | 11.0 ± 0.6 | | | 150 | 11.2 ± 0.5 | 11.0 ± 0.4 | 9.4 ± 0.5 | 10.0 ± 0.4 | 10.5 ± 0.6 | 10.1 ± 0.3 | 10.1 ± 0.8 | 10.3 ± 0.5 | | | 30 | 5.3 ± 1.0 | 5.0 ± 0.5 | 4.5 ± 0.3 | 4.7 ± 0.4 | 6.2 ± 0.6 | 5.3 ± 0.8 | 4.4 ± 0.4 | 4.5 ± 0.8 | | brainstem | 60 | 3.5 ± 0.2 | 3.4 ± 0.2 | 2.9 ± 0.2 | 2.8 ± 0.2 | 3.2 ± 0.1 | 3.4 ± 0.4 | 2.6 ± 0.2 | 2.7 ± 0.3 | | Utanisteni | 100 | 3.8 ± 0.6 | 3.8 ± 0.5 | 3.9 ± 0.4 | 3.8 ± 0.3 | 3.7 ± 0.4 | 3.2 ± 0.4 | 2.9 ± 0.3 | 3.0 ± 0.2 | | | 150 | 3.0 ± 0.3 | 3.1 ± 0.2 | 3.2 ± 0.2 | 3.7 ± 0.2 | 3.4 ± 0.2 | 2.9 ± 0.1 | 3.5 ± 0.2 | 3.3 ± 0.2 | **TABLE S5:** nAChR Binding (mean ± SE) | Region | Postnatal
Age | | Ma | ıle | | Female | | | | |--------------------|------------------|-------------|------------------|---------------------------|--------------------------|-------------|------------------|---------------------------|--------------------------| | | | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | | | 30 | 57 ± 4 | 58 ± 2 | 53 ± 2 | 53 ± 3 | 57 ± 3 | 53 ± 2 | 53 ± 3 | 47 ± 5 | | frontal/parietal | 60 | 66 ± 4 | 64 ± 3 | 59 ± 5 | 57 ± 5 | 57 ± 4 | 49 ± 2 | 59 ± 4 | 54 ± 5 | | cortex | 100 | 57 ± 2 | 58 ± 3 | 53 ± 2 | 49 ± 2 | 51 ± 2 | 53 ± 2 | 51 ± 6 | 47 ± 3 | | | 150 | 38 ± 2 | 41 ± 3 | 35 ± 5 | 45 ± 3 | 39 ± 2 | 39 ± 3 | 31 ± 3 | 35 ± 2 | | | 30 | 78 ± 5 | 76 ± 2 | 66 ± 5 | 74 ± 5 | 81 ± 5 | 76 ± 3 | 69 ± 4 | 64 ± 3 | | temporal/occipital | 60 | 63 ± 1 | 71 ± 2 | 60 ± 2 | 61 ± 4 | 66 ± 2 | 57 ± 1 | 59 ± 3 | 47 ± 3 | | cortex | 100 | 49 ± 2 | 55 ± 5 | 48 ± 2 | 47 ± 2 | 52 ± 5 | 51 ± 3 | 51 ± 5 | 49 ± 4 | | | 150 | 52 ± 1 | 45 ± 1 | 49 ± 3 | 45 ± 3 | 51 ± 1 | 47 ± 3 | 45 ± 4 | 44 ± 3 | | | 30 | 40 ± 2 | 44 ± 4 | 38 ± 3 | 40 ± 4 | 41 ± 2 | 37 ± 2 | 40 ± 1 | 28 ± 3 | | hinnaaamnus | 60 | 36 ± 2 | 36 ± 2 | 35 ± 4 | 31 ± 1 | 35 ± 2 | 35 ± 2 | 35 ± 2 | 29 ± 2 | | hippocampus | 100 | 37 ± 2 | 42 ± 4 | 30 ± 3 | 35 ± 2 | 37 ± 3 | 34 ± 3 | 35 ± 4 | 32 ± 4 | | | 150 | 29 ± 1 | 33 ± 2 | 26 ± 3 | 29 ± 3 | 36 ± 2 | 29 ± 3 | 30 ± 1 | 28 ± 2 | | | 30 | _ | _ | _ | _ | _ | _ | _ | _ | | striatum | 60 | 78 ± 2 | 72 ± 3 | 70 ± 5 | 74 ± 6 | 74 ± 5 | 68 ± 4 | 75 ± 5 | 63 ± 5 | | Striatum | 100 | 72 ± 13 | 84 ± 6 | 75 ± 8 | 70 ± 8 | 77 ± 12 | 82 ± 11 | 75 ± 7 | 63 ± 5 | | | 150 | 66 ± 2 | 72 ± 4 | 66 ± 4 | 65 ± 4 | 73 ± 3 | 61 ± 5 | 65 ± 1 | 56 ± 3 | | | 30 | 69 ± 2 | 61 ± 2 | 69 ± 2 | 57 ± 4 | 68 ± 2 | 60 ± 4 | 67 ± 4 | 63 ± 1 | | midbrain | 60 | 56 ± 2 | 54 ± 1 | 50 ± 2 | 43 ± 2 | 54 ± 2 | 50 ± 3 | 49 ± 4 | 46 ± 2 | | midoram | 100 | 54 ± 4 | 60 ± 5 | 55 ± 3 | 53 ± 3 | 53 ± 2 | 53 ± 3 | 52 ± 4 | 53 ± 4 | | | 150 | 49 ± 2 | 49 ± 1 | 47 ± 1 | 48 ± 2 | 55 ± 2 | 48 ± 2 | 48 ± 2 | 49 ± 3 | | | 30 | 34 ± 1 | 38 ± 2 | 35 ± 1 | 33 ± 2 | 37 ± 2 | 34 ± 1 | 32 ± 2 | 32 ± 3 | | brainstem | 60 | 27 ± 1 | 26 ± 1 | 27 ± 1 | 26 ± 1 | 25 ± 1 | 27 ± 1 | 26 ± 2 | 25 ± 1 | | Diamstem | 100 | 25 ± 1 | 27 ± 1 | 24 ± 1 | 26 ± 1 | 28 ± 2 | 30 ± 1 | 24 ± 1 | 23 ± 2 | | | 150 | 25 ± 2 | 27 ± 2 | 24 ± 2 | 26 ± 1 | 26 ± 1 | 26 ± 2 | 24 ± 1 | 25 ± 1 | TABLE S6: 5HT Receptor Binding (mean \pm SE) | Subtype and
Region | Postnatal
Age | | Male (fmol/ | mg protein) | | Female (fmol/mg protein) | | | | | | |-----------------------------|------------------|-----------------------|-----------------------|---------------------------|--------------------------|-----------------------------|-----------------------|---------------------------|--------------------------|--|--| | 5HT _{1A} Receptors | | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | Control | TSE
Premating | TSE
Early
Gestation | TSE
Late
Gestation | | | | | 30 | 76 ± 2 | 74 ± 5 | 65 ± 6 | 61 ± 7 | 83 ± 6 | 76 ± 3 | 70 ± 6 | 67 ± 6 | | | | frontal/parietal | 60 | 107 ± 4 | 109 ± 3 | 103 ± 9 | 90 ± 6 | 105 ± 3 | 102 ± 7 | 105 ± 9 | 92 ± 9 | | | | cortex | 100 | 105 ± 3 | 110 ± 3 | 105 ± 7 | 98 ± 6 | 100 ± 10 | 110 ± 9 | 111 ± 10 | 101 ± 8 | | | | | 150 | 95 ± 3 | 91 ± 7 | 83 ± 8 | 85 ± 8 | 89 ± 7 | 93 ± 8 | 83 ± 6 | 79 ± 5 | | | | | 30 | 131 ± 5 | 129 ± 10 | 129 ± 5 | 124 ± 7 | 138 ± 14 | 145 ± 9 | 128 ± 11 | 135 ± 9 | | | | temporal/occipital | 60 | 115 ± 2 | 111 ± 5 | 112 ± 7 | 102 ± 7 | 120 ± 6 | 111 ± 6 | 104 ± 6 | 95 ± 8 | | | | cortex | 100 | 92 ± 5 | 100 ± 5 | 94 ± 5 | 93 ± 8 | 85 ± 5 | 101 ± 6 | 99 ± 5 | 89 ± 5 | | | | | 150 | 124 ± 1 | 110 ± 7 | 119 ± 11 | 107 ± 9 | 116 ± 6 | 127 ± 11 | 101 ± 7 | 115 ± 8 | | | | | 30 | 67 ± 2 | 68 ± 5 | 69 ± 5 | 64 ± 7 | 73 ± 2 | 70 ± 7 | 71 ± 4 | 62 ± 6 | | | | . 11 | 60 | 64 ± 1 | 61 ± 4 | 58 ± 5 | 48 ± 3 | 59 ± 4 | 59 ± 2 | 53 ± 6 | 51 ± 4 | | | | midbrain | 100 | 47 ± 2 | 50 ± 4 | 43 ± 4 | 45 ± 3 | 43 ± 1 | 43 ± 3 | 44 ± 3 | 44 ± 3 | | | | | 150 | 51 ± 5 | 54 ± 2 | 54 ± 4 | 53 ± 5 | 54 ± 2 | 53 ± 3 | 50 ± 1 | 48 ± 4 | | | | | 30 | 50 ± 1 | 55 ± 1 | 49 ± 1 | 47 ± 3 | 55 ± 2 | 53 ± 1 | 49 ± 3 | 50 ± 6 | | | | | 60 | 33 ± 2 | 34 ± 1 | 31 ± 3 | 27 ± 1 | 34 ± 2 | 35 ± 2 | 29 ± 2 | 29 ± 2 | | | | brainstem | 100 | 29 ± 1 | 31 ± 2 | 30 ± 2 | 29 ± 2 | 30 ± 2 | 32 ± 1 | 30 ± 1 | 26 ± 3 | | | | | 150 | 31 ± 1 | 33 ± 1 | 29 ± 2 | 29 ± 2 | 35 ± 2 | 31 ± 1 | 29 ± 1 | 30 ± 2 | | | | | | | | | | | | | | | | | 5HT ₂ Receptors | | | | | | | | | | | | | | 30 | 174 ± 5 | 177 ± 3 | 178 ± 4 | 176 ± 5 | 177 ± 2 | 177 ± 4 | 175 ± 7 | 175 ± 2 | | | | frontal/parietal | 60 | 194 ± 7 | 182 ± 8 | 191 ± 4 | 178 ± 5 | 195 ± 5 | 192 ± 3 | 197 ± 3 | 182 ± 7 | | | | cortex | 100 | 187 ± 4 | 196 ± 7 | 204 ± 6 | 188 ± 7 | 193 ± 4 | 189 ± 6 | 211 ± 8 | 194 ± 5 | | | | | 150 | 167 ± 7 | 170 ± 3 | 172 ± 4 | 161 ± 2 | 170 ± 2 | 177 ± 5 | 175 ± 7 | 157 ± 2 | | | | | 30 | 110 ± 4 | 118 ± 5 | 114 ± 8 | 111 ± 8 | 120 ± 2 | 114 ± 4 | 115 ± 6 | 112 ± 6 | | | | temporal/occipital | 60 | 102 ± 3 | 108 ± 4 | 103 ± 3 | 101 ± 5 | 103 ± 3 | 108 ± 3 | 109 ± 5 | 100 ± 2 | | | | cortex | 100 | 92 ± 3 | 97 ± 4 | 96 ± 3 | 92 ± 2 | 92 ± 2 | 98 ± 4 | 105 ± 5 | 91 ± 2 | | | | | 150 | 87 ± 4 | 90 ± 4 | 90 ± 3 | 84 ± 1 | 89 ± 1 | 90 ± 3 | 90 ± 3 | 86 ± 1 | | | | | 30 | 29 ± 1 | 30 ± 1 | 30 ± 1 | 29 ± 1 | 30 ± 1 | 30 ± 1 | 30 ± 1 | 28 ± 1 | | | | | 60 | 26 ± 1 | 26 ± 1 | 25 ± 1 | 23 ± 1 | 26 ± 1 | 26 ± 1 | 25 ± 1 | 23 ± 1 | | | | midbrain | 100 | 20 ± 1 22 ± 1 | 23 ± 1 | 23 ± 1 22 ± 1 | 23 ± 1 22 ± 1 | 23 ± 1 | 20 ± 1 | 23 ± 1 22 ± 1 | 23 ± 1 23 ± 1 | | | | | 150 | 22 ± 1 22 ± 1 | 23 ± 1 22 ± 1 | 22 ± 1 22 ± 1 | 21 ± 1 | $\frac{23 \pm 1}{23 \pm 1}$ | 22 ± 1 22 ± 1 | 23 ± 1 | 23 ± 1 21 ± 1 | | | | | 30 | 28 ± 1 | 29 ± 1 | 28 ± 1 | 28 ± 1 | 30 ± 1 | 29 ± 1 | 30 ± 1 | 28 ± 1 | | | | | 60 | 25 ± 1 | 25 ± 1 | 25 ± 1 | 24 ± 1 | 25 ± 1 | 26 ± 1 | 23 ± 1 | 23 ± 1 | | | | brainstem | 100 | 21 ± 1 | 21 ± 1 | 22 ± 1 | 21 ± 1 | 21 ± 1 | 22 ± 1 | 20 ± 1 | 20 ± 1 | | | | | 150 | 17 ± 1 | 18 ± 1 | 17 ± 1 | 18 ± 1 | 18 ± 1 | 16 ± 1 | 18 ± 1 | 18 ± 1 | | |